

NORTH CENTRAL Climate Adaptation Science Center

Climate Change Scenario Planning

Brian Miller, USGS, North Central Climate Adaptation Science Center

U.S. Department of the Interior U.S. Geological Survey

Photo: Brian Miller

Key recent partners in scenario-based adaptation R&D:

Gregor Schuurman – NPS Climate Change Response Program Amber Runyon – NPS Climate Change Response Program Amy Symstad – USGS Northern Prairie Wildlife Research Center Imtiaz Rangwala – University of Colorado, Boulder Brecken Robb – Boise State University

Part I

'Heat dome' probably killed 1bn marine animals on Canada coast, experts say

https://www.theguardian.com /environment/2021/jul/08/he at-dome-canada-pacificnorthwest-animal-deaths

COVID-19 Arts + Culture Economy + Business Education Environment + Energy Ethics + Religion Health Politics - Society

Rocky Mountain forests burning more now than any time in the past 2,000 years

The New Hork Times

Flooding Chaos in Yellowstone, a Sign of Crises to Come

Record rainfall and mudslides forced closures just as tourism season ramped up. Virtually none of America's national parks are untouched by extreme weather and climate change.

Q. Search analysis, research, academics

https://www.nytimes.com/2022/06/15/us/yellowstone-national-parkfloods.html

https://theconversation.com/rockymountain-forests-burning-more-now-thanany-time-in-the-past-2-000-years-162383

PLAY THE CROSSWORE

count v

Jan-Dec (Annual) Mean Temperature

Boise, ID

Jan-Dec (Annual) Precipitation

Boise, ID

Despite uncertainty, resource managers need to make decisions and act to meet goals.

In a changing world with an uncertain future, how can we know what to do?

"C'mon, c'mon-it's either one or the other."

Scenario planning!

Traditional planning

- Assumes the future will resemble the past
- Assumes high certainty in our ability to accurately predict the future
- Encourages a precise characterization of the future
- Leaves managers vulnerable to surprises in situations of high uncertainty

Traditional planning

- Assumes the future will resemble the past
- Assumes high certainty in our ability to accurately predict the future
- Encourages a precise characterization of the future
- Leaves managers vulnerable to surprises in situations of high uncertainty

Scenario planning

- Assumes the future will likely differ from the past
- Recognizes uncertainty and asks "what might happen?" in a rigorous and structured way
- Encourages broad and open-minded exploration of future possibilities and surprises
- Helps managers identify strategies that are robust to uncertainty

10

Scenario Planning

Images: Wikimedia Commons; Scupelli, P., Wasserman, A. and Brooks, J., 2016. Dexign futures: a pedagogy for long-horizon design scenarios

Scenario Planning

Bob Krumenaker, Superintendent, Big Bend National Park

"We need to understand, not what 'the' future will look like, because nobody can predict that, but we do need to understand the range of possible futures"

Using Information From Global Climate Models to Inform Policymaking—The Role of the U.S. Geological Survey

By Adam Terando, David Reidmiller, Steven W. Hostetler, Jeremy S. Littell, T. Douglas Beard, Jr., Sarah R. Weiskopf, Jayne Belnap, Geoffrey S. Plumlee

Open-File Report 2020–1058

"Examining a range of projected climate outcomes based on multiple scenarios is a recommended best practice..."

NPS Scenario-Based Climate Change Adaptation Timeline

NPS Scenario-Based Climate Change Adaptation Showcase: https://www.nps.gov/subjects/climatechange/scenarioplanning.htm

"We share... a robust model of streamlining and mainstreaming of CC SP in diverse decision-making processes...

[This] model...was developed in a partnership between the NPS and the USGS across more than 15 years in a series of applications in dozens of park units involving hundreds of federal, tribal, state, and local-government participants, including US Forest Service field staff."

--Reynolds et al. 2024

Reynolds, J.H., Miller, B.W., Schuurman, G.W., Carr, W.A., Symstad, A.J., Gross, J.E. and Runyon, A.N., 2024. Accurately Characterizing Climate Change Scenario Planning in the US National Park Service: Comment on Murphy et al. 2023. *Society & Natural Resources*, pp.1-6.

Generalized CC SP Approach

Generalized CC SP Approach

Miller BW, Schuurman GW, Symstad AJ, Runyon AN, Robb BC. 2022. Conservation under uncertainty: Innovations in participatory climate change scenario planning from US national parks. *Conservation Science and Practice*: e12633.

Miller BW, Schuurman GW, Symstad AJ, Runyon AN, Robb BC. 2022. Conservation under uncertainty: Innovations in participatory climate change scenario planning from US national parks. *Conservation Science and Practice*: e12633.

Badlands NP

Badlands NP

- Focal Resources
- Grasslands & grazing
- Infrastructure
- Paleo & archaeological resources
- Threatened and endangered species

Miller BW, Schuurman GW, Symstad AJ, Runyon AN, Robb BC. 2022. Conservation under uncertainty: Innovations in participatory climate change scenario planning from US national parks. *Conservation Science and Practice*: e12633.

Badlands NP

- Focal Resources
- Grasslands & grazing
- Infrastructure
- Paleo & archaeological resources
- Threatened and endangered species

Badlands NP

Focal Resources

- Grasslands & grazing
- Infrastructure
- Paleo & archaeological resources
- Threatened and endangered species

Miller BW, Symstad AJ, Schuurman GW, 2019. Implications of Climate Change Scenarios for Badlands National Park Resource Management. Resource Brief, National Park Service Resource Brief. Fort Collins, CO.

Climate Sensitivity			Water			Vegetation			Cultural					Wildlife				Other		
Tier	Climate driver subclass	Specific climate metric	Ground water	Surface water	Prairie	Riparian vegetation	Forest complex	Rare plant species	Plants of Tribal collection interest	Archeolog ical resources	Museum collections	Sanson ranch structures	CCC'-era structures	Mission 66 structures	Bison	BFF & BTPD	Elk	Bats	Air quality	Cave (micro- climate)
1	Winter temp	Winter (DJF) temps - average	m	m	m	m	m	m										н		н
2	Winter temp	Frequency/duration of temps below threshold													н		Н	н		
2	Winter temp	Winter length																н		
2	Freeze-thaw	# days/year where Tmax > 34 °F & Tmin < 28 °F								m		н	н	н						
2	Freeze events	Late spring frost events							m									н		
2	Growing season	Growing season start date			н		н													
2	Growing season	Growing season end date			н		н													
2	Annual temp	Annual mean temp or Monthly mean temp	m	m		н	m													
1	Extreme precip	# days/yr that precip exceeds 99 th -percentile event (for 1950- 1999 historical period)	н	н		н				m			н					m		
2	Extreme precip	Size of extreme precipitation events	m	m		н				m			н							
2	Precip timing	Rain on frozen soil	н	н		н							н							
2	Precip timing	Rain on saturated soil	н	н		Н							н							
2	Precip timing	Proportion of annual precip falling in fall & winter	н	н	н	m	m													
2	Precip timing	Periods of consecutive wet/dry days	m	н	н	m	н	m		н					m	m	m	m		
2	Snow	Number of snow- covered days per year					н													
1	Soil moisture	Apr-Jun Soil Moisture	н	н	н	Н	н	Н	m						m	н	m	m		
2	Drought	Drought frequency	m	н	н	Н	Н	Н	m	н					н	н	н	н	н	

Runyon, A. N., G. W. Schuurman, B. W. Miller, A. J. Symstad, and A. R. Hardy. 2021. Climate change scenario planning for resource stewardship at Wind Cave National Park: Climate change scenario planning summary. Natural Resource Report NPS/NRSS/NRR—2021/2274. <u>https://doi.org/10.36967/nrr-2286672</u>

Miller BW, Schuurman GW, Symstad AJ, Runyon AN, Robb BC. 2022. Conservation under uncertainty: Innovations in participatory climate change scenario planning from US national parks. *Conservation Science and Practice*: e12633.

Climatic Change (2021) 167: 38 https://doi.org/10.1007/s10584-021-03169-y

Divergent, plausible, and relevant climate futures for near- and long-term resource planning

David J. Lawrence¹ · Amber N. Runyon¹ · John E. Gross¹ · Gregor W. Schuurman¹ · Brian W. Miller²

Change in annual mean temperature (°C)

Changes in Extreme Precip. Events and Hot Days in 2040*

To be continued...

Part II

MORE IMPORTANT than the quest for certainty is the quest for CLARITY Francois Gautier

Changes in Extreme Precip. Events and Hot Days in 2040*

Synopses "Climate Future 1"

- Moderate warming (+3 °F), with relatively constant change across all months
- Days/year >96 °F: 8 (4-day increase from historical)
- Days/year <32 °F: 167 (15-day decrease from historical)
- · Precipitation increase in all seasons, highest in spring and summer
- Substantial increase in the frequency of large precipitation events (>1 inch/day)
- Summer water deficit decreases slightly
- · Moderate increases in spring soil moisture

"Climate Future 2"

- Low warming (+2 °F), most strongly in early spring
- Days/year >96 °F: 5 (1-day increase from historical)
- Days/year <32 °F: 168 (14-day decrease from historical)
- · Precipitation increases in all seasons except fall
- No change in the frequency of large precipitation events (>1 inch/day)
- No change in summer water deficit
- Slight increase in early spring soil moisture

"Climate Future 3"

- Severe warming (+5 °F), most strongly in early spring
- Days/year >96 °F: 32 (28-day increase from historical)
- Days/year <32 °F: 151 (30-day decrease from historical)
- Substantial precipitation increases in spring, moderate in winter and fall, decreases in summer
- Moderate increase in the frequency of large precipitation events (>1 inch/day)
- Summer water deficit increases slightly
- Slight increase in spring soil moisture

"Climate Future 4"

- Severe warming (+4 °F), most strongly late spring and early summer
- Days/year >96 °F: 18 (15-day increase from historical)
- Days/year <32 °F: 161 (20-day decrease from historical)
- Substantial precipitation decreases in summer and increases in spring
- Decrease in the frequency of large precipitation events (>1 inch/day)
- Summer water deficit increases substantially
- · Substantial decrease in late spring soil moisture with the least moisture in late spring

0

 Table 1. Changes in key aspects of BADL climate through 2050 for four climate futures. Arrow size and direction denote trends compared to conditions of the recent past (1950-1999). Down arrows denote decreasing values or earlier dates, up arrows increasing values, and sideways arrows no change. Larger arrows indicate greater change.

Miller BW, Symstad AJ, Schuurman GW, 2019. Implications of Climate Change Scenarios for Badlands National Park Resource Management. Resource Brief, National Park Service Resource Brief. Fort Collins, CO.

Miller BW, Schuurman GW, Symstad AJ, Runyon AN, Robb BC. 2022. Conservation under uncertainty: Innovations in participatory climate change scenario planning from US national parks. *Conservation Science and Practice*: e12633.

What are scenarios?

"Scenarios are stories about the ways that the world might turn out tomorrow...

...that can help us recognize and adapt to changing aspects of our current environment"

-Peter Schwartz

Priority	Resource component	Log Ride
		 Warmer temperatures reduce climate suitability for birch (<i>Betula</i>) and aspen (<i>Populus</i>)
	Riparian	 Higher GW tables (as long as withdrawal doesn't increase more) sustain riparian trees through drought periods (those reaching the GW). Decreased SW availability in the summer puts areas at risk of wildlife trampling, which, when combined with flooding from flashier precipitation, decreases bank stability and therefore habitat for wetland herbaceous species
Vegetatior		 Potential for episodes of high pine recruitment (seedling crops) in wet years
		Prescribed fire: same as prairie
	Forest	 Wildfire: same as prairie, though high- recruitment episodes increase ladder fuels, and therefore fire severity
		 If potential increase in recruitment balances increased mortality, forest will persist largely as is now or could even increase in extent if prescribed fire does not keep up with expansion into grasslands
	Rare plant species ⁷	 Orchids hang on because of occasional years with high spring soil moisture availability

Runyon, A. N., G. W. Schuurman, B. W. Miller, A. J. Symstad, and A. R. Hardy. 2021. Climate change scenario planning for resource stewardship at Wind Cave National Park: Climate change scenario planning summary. Natural Resource Report NPS/NRSS/NRR—2021/2274. <u>https://doi.org/10.36967/nrr-2286672</u>

Priority	Resource component	Log Ride	Hourglass	Jenga	Convection Oven	Common across all/most scenarios
	Riparian	 Warmer temperatures reduce climate suitability for birch (<i>Betula</i>) and aspen (<i>Populus</i>) Higher GW tables (as long as withdrawal doesn't increase more) sustain riparian trees through drought periods (those reaching the GW). Decreased SW availability in the summer puts areas at risk of wildlife trampling, which, when combined with flooding from flashier precipitation, decreases bank stability and therefore habitat for wetland herbaceous species 	 Moderate increase in temperatures only slightly decreases climate suitability for birch and aspen, so they decline only slightly if at all Riparian areas contract gradually as GW and SW both decline. Tree species already at the low end of their precip tolerance (hackberry, green ash, ironwood, bur oak, elms) decline or disappear 	 Much higher temperatures, especially in latter half of future period, push birch and aspen out of their range of climate suitability, leading to their decline More frequent, more intense, and more multi-year droughts, especially in second half of future period, reduce vigor of riparian trees and lead to severe concentration of wildlife around what remains of water sources, further damaging riparian vegetation 	 Hot and dry conditions are not suitable for birch and aspen, leading to their extirpation Perpetual drought conditions (compared to historical) leads to severe contraction or extirpation of riparian trees and shrubs 	 Reduced suitability for birch and aspen Contraction of riparian area from drought (3 of 4 scenarios)
Vegetation	Forest	 Potential for episodes of high pine recruitment (seedling crops) in wet years Prescribed fire: same as prairie Wildfire: same as prairie, though high- recruitment episodes increase ladder fuels, and therefore fire severity If potential increase in recruitment balances increased mortality, forest will persist largely as is now or could even increase in extent if prescribed fire does not keep up with expansion into grasslands 	 Prescribed fire: same as prairie Wildfire: same as prairie Minor, if any, decrease in ponderosa pine forest, or potentially even increase if prescribed fire does not keep up with expansion into grasslands 	 Prescribed fire: same as prairie Wildfire: same as prairie, except fire severity higher because of lower moisture conditions in heavy fuels Increased fire risk and greater mortality from other causes, combined with lower regeneration, causes slow (or very fast, if catastrophic fire) decline in forest extent and density 	 Prescribed fire: same as prairie Wildfire: Occurs more frequently and through much of the year, stressing fire-fighting resources and leading to larger fires that are higher in severity because of lower moisture conditions in heavy fuels Increased fire risk and greater mortality from other causes, combined with lower regeneration, causes slow (or very fast, if catastrophic fire) decline in forest extent and density 	 Increased wildfire risk and season length Shifted timing for prescribed fires, or less opportunity
	Rare plant species ⁷	 Orchids hang on because of occasional years with high spring soil moisture availability 	 Orchids decline due to strong decrease in spring soil moisture availability 	Orchids decline sharply in second half of future period when droughts become more common and severe	Orchids decline precipitously or disappear from the park	Orchids decline (3 of 4 scenarios)

Runyon, A. N., G. W. Schuurman, B. W. Miller, A. J. Symstad, and A. R. Hardy. 2021. Climate change scenario planning for resource stewardship at Wind Cave National Park: Climate change scenario planning summary. Natural Resource Report NPS/NRSS/NRR—2021/2274. <u>https://doi.org/10.36967/nrr-2286672</u>

Priority	iority Resource component		Log Ride		Hourglass		nga		Convection Oven		Common across all/most scenarios					
	More winter precip and higher winter temps lead to earlier and more snow melt, adding to GW recharge Annual, spring, and winter precip increases likely increase GW levels Warmer late summers increase GW use by humans which may affect the			inter now vels - Slow decli GW - GW levels time tithe	 Slow decline of GW availability GW levels about the same as historical because very little change in annual precip and GW loss has low climate sensitivity 			 Decrease in GW levels—faster than the other scenarios Rate of GW decline dependent on external uses—greatest potential for more GW use outside of the park 		-						
		Priority	Resource cor	nponent	Log Ride		Hourglass		Jeng	ga		Convection Oven		c	Common	across all/mos
					Warme suitabil (Populu	r temperatures red ity for birch (<i>Betula</i>) <i>is</i>)	uce climate) and aspen • Modera	te increase in temperatures	• 1	Much higher temperatures, esp in latter half of future period, put	ecially sh					
				Г	Priority Resource	e component	Log Ride	Hourglass		Jenga	Convec	tion Oven	Common acros	s all/most sc	enarios	
Water	S		م Cuttural	Archaeological	Black-foo tailed pra	ted ferret (BFF) & Black- irie dog (BTPD)	 BTPD: Increase in fleas in wet y so colonies more likely to contra plague in very wet years but cour rebound in intervening years BFF: Potential increase in flea s (two flea species that peak in di times) may increase plague risk BTPD which could indirectly imp 	 BTPD: Expansion of prairie dog colonies and potential slight ded in plague due to fewer fleas in dy years BFF: Potential decrease in plag BTPD due to fewer fleas in drie could increase prey availability 	o crease drier jue in r years of	 BTPD: Slightly positive effects, at least in first half—potentially higher forage while with pups; then dries out so colonies can expand. Can take advantage of late season green-ups BFF: Expansion of BTPD colonies leads to potentially slightly more ferrate but BTPD habitat limited to 		D: Colony area expands and ity will decrease. Inconclusive as nat happens to disease rates, ugh initial thoughts are less ice of disease transmission? D: Might see drops in pup uction after severe droughts Drier conditions thought to be	 BTPD: Prairie dog populations maintained within target colony acreage BTPD: Colonies will have potential to expand because of drier conditions (of 4 scenarios) BFF: Ferret populations maintained within targets 		ions blony potential to onditions (3	- ian 1ar
							BFF obligate prey base of BTPI reduce BFF populations	D and BTPD to black-footed ferrets lea slight increase in ferrets	BTPD to black-footed terrets leads to slight increase in ferrets		less fleas BFF	likely for plague due to fewer leads to potential increase in populations			annaineu	
		Vegetation	Forest	Auseum collectior	ejijoji		 More food in some years but sli less in most Potentially higher reproductive r some years because of better for in some years High tick numbers Slight potential, if elk are more s out when better forage is availa that there is less transmission o chronic wasting disease (CWD) 	 Slight decrease in productivity or prairie, but because grazing is to capacity it won't impact elk num Elk slightly more concentrated, particularly around water resour when drier, with more potential transmission of CWD Potentially fewer ticks, because moisture in spring 	of below ibers rces for : of less	 Decrease in growing season moisture availability leads to decreased productivity of prairie, but because grazing is below capacity it won't impact elk numbers Late summer decrease in precipitation, with increased fire risk that could decrease forage Animals may be more concentrated in the late summer; might be a short season of being concentrated in riparian areas. Concentration leads to higher possibility for CWD transmission High tick numbers Unknown if novel diseases such as Bluetongue may arrive in WICA with implications for elk 	 May trans conc reso Veg curre althe from Pote goin num Pote goin Wate Duri pote wate 	have increase in CWD mission because they will be entrated on limited water urce etation should be adequate for ent (2019) population of elk, ugh there will be more pressure grazing on prairie vegetation ntial loss of forage with fire risk g up may lead to constraint on bers of elk er tick numbers er might be a constraining factor. In gsevere droughts, slight ntial for elk to try to leave park for r sources	 Lower forage quality (duet increased fird (periodic in S elk Higher poten (3 of 4 scena Tick number: scenarios) 	e quantity and o increase in e risk) in droug iccenario 1) ma tial for CWD t rios) s increase (3 o	possibly exotics, ght years ay impact ransmission of 4	ed wildfire risk timing for pres portunity
			Rare plant spe	ecies ⁷	Bats		 More insects for bats during wey years. Potentially the highest poeffect on bats with the most wat available. Distance to water is le food availability is greater Might have issues with forest findry years 	 Potential slight decrease in bat populations, although not as mu under Scenario 4 Decreasing bat populations from of water sources, and increased distance required to travel for w Drier conditions reduce insect populations, decreasing food availability and fitness, resulting fewer bats 	uch as n loss d ater g in	 Able to reproduce. Good foraging in the spring because of high moisture; counteracted by dry August. If there's a wet September, they might be able to recover When pups are young, there will be good forage. Tough month in August, but there could be a bump in September if we get more precip 	 Worr Deci of windistance Fore fores decr Dries populavail fewer 	st scenario for bats easing bat populations from loss ater sources and increased nce required to travel for water st fire leads to potential loss of it and less roosting habitat, easing bat numbers conditions reduce insect lations, decreasing food ability and fitness, resulting in r bats	 Drought year Scenario 1) I and/or insect Might have is dry years lea habitat Uncertainty a syndrome ma climate chan 	is result in (pe ower water av s during those sues with for- ding to loss o about how whi ay affect bats ge	eriodic in vailability e periods est fire in f roosting ite nose in light of	decline (3 of 4

Quantitative Scenarios

• Consider incorporating quantitative resource response information

Miller, BW, AJ Symstad, L Frid, NA Fisichelli, GW Schuurman. 2017. Co-producing simulation models to inform resource management: a case study from southwest South Dakota. *Ecosphere* 8(12).

Quantitative Scenarios

- Consider incorporating quantitative resource response information
- E.g., modeled veg. biomass & composition & mgmt. costs as a function of:
 - 4 climate futures
 - 4 management alternatives
 - Grazing rates/seasons
 - Rx fire
 - Invasive inventory & treatment
 - Vary by jurisdiction

Scenario Planning: Testing Strategies

"If the world turns out as described in scenario X, am I going to succeed in achieving my goals?"

Miller BW, Schuurman GW, Symstad AJ, Runyon AN, Robb BC. 2022. Conservation under uncertainty: Innovations in participatory climate change scenario planning from US national parks. *Conservation Science and Practice*: e12633.

Scenario Planning

We cannot know what *will* happen, but we can prepare for what *might* happen.

Scenario Planning

We cannot know what *will* happen, but we can prepare for what *might* happen.

When we ask what might happen, we need to guard against

OPTIMISM BIAS

- A common human tendency to underestimate the probability and consequences of negative outcomes.

Slide: G. Schuurman

Scenario planning training aid on Optimism Bias: <u>Training Aid: What might happen? How to make the most of scenario planning. (nps.gov)</u>

Climate Change Response Program National Par U.S. Departer Natural Resources Stewardship & Science

"Optimism is like red wine. A glass a day is good for you, but a bottle a day can be hazardous." -Manju Puri & David Robinson in Optimism & Economic Choice

National Park Service (NPS) has been using scenario planning since 2007 to help parks prepare for what might happen as a result of climate change.

Since then, the NPS Climate Change Response Program developed improved methods to provide parkspecific climate projections to support scenario planning. Faciliated discussions with scientists, park staff, and other subject matter experts produce scenarios that are plausible (based on best available science), relevant (focused on a management question), and divergent (characterize a broad range of future conditions).

As an unfortunate testament to their plausibility and relevance, a number of imagined, worst-case scenarios were "scooped by reality" in recent years. As our world changes rapidly in new and novel ways, we must increasingly be ready for such events. Doing so requires that we work through mental barriers that might prevent us from properly considering high-risk scenarios.

Our rational minds are often hijacked by myriad fallacies, biases, and mental shortcuts. Among them is **optimism bias**, wherein people often overestimate the probability of positive events, and/or underestimate the probability of negative outcomes. In moderation, optimism bias fortifies us against depression and despair. But left unchecked, optimism bias can promote risky behaviors or disincentivize taking proper precautions.

"Optimism is like red wine. A glass a day is good for you, but a bottle a day can be hazardous." -Manju Puri & David Robinson in Optimism & Economic Choice

Optimism bias transcends education, experience, and background—it seems we all like to hope for the best! But when we recognize and account for optimism bias, we are better able to anticipate challenges and avoid risk. In the context of scenario planning, tempering optimistic tendencies prepares us to better envision a full range of plausible futures, and consider management options with greater urgency. The following case studies may be helpful as you begin to envision your future scenarios. Pearmam, O, L Perez, W Carr. 2022. What might happen? How to make the most of scenario planning. Training Aid. NPS. <u>https://www.nps.gov/subjects/clima</u> techange/scenarioplanning.htm Unfortunately, a number of imagined, worst-case scenarios have played out on NPS lands in recent years...

Unprecedented wildfire Lassen Volcanic NP

Extreme rain+flooding Perma Acadia NP

Permafrost thaw+landslides Denali NP

Slide: G. Schuurman

Scenario planning training aid on Optimism Bias: Training Aid: What might happen? How to make the most of scenario planning. (nps.gov)

Strategies for tempering OPTIMISM BIAS

- Think about the unthinkable: We are better prepared to act when we
 proactively confront the possibility of worst-case realities.
- Think bigger: Don't downplay the severity or magnitude of extreme scenarios. Anticipating extremes boosts our capacity regardless of what happens.
- *Plan for sooner rather than later:* It's better to imagine difficult futures happening sooner than anticipated, and recognize signs of extreme change.
- *Give fair attention to the improbable:* Strive for objectivity in interpreting the best available information for scenarios to help prepare for extreme, complex events.

Slide: G. Schuurman

Scenario planning training aid on Optimism Bias: Training Aid: What might happen? How to make the most of scenario planning. (nps.gov)

NORTH CENTRAL Climate Adaptation Science Center

Brian Miller: bwmiller@usgs.gov

