Sagebrush, perennial grasses & soil moisture: what should we expect?

Science for a changing world

Northwest CASC

SW Biological Science Center

Sagebrush, perennial grasses & soil moisture: what should we expect?

Northwest CASC

SW Biological Science Center

Daniel Schlaepfer Martin Holdrege Adam Noel Gregor Siegmund Alice Stears Caitlin Andrews Lief Wiechman Seth Munson Rob Massatti Mike Duniway David Pilliod Matt Germino

Kyle Palmquist Maggie England

t Joc

NORTHERN

Brad Butterfield

Jodi Norris Megan Swan

Yale Bill Lauenroth Rachel Renne Damaris Chenoweth

Chad Boyd Stella Copeland David Barnard Rory O'Connor

Tom Remington

Megan Creutzberg

R

University of Nevada, Reno

Bob Shriver

Ali Urza Jeanne Chambers Jessie Brown David Board Karen Short Karin Riley David Bell

INIX

Matt Petrie

Climate Adaptation Science Center

U.S. FISH & WILDLIFF SERVICE

Sagebrush, perennial grasses & soil moisture: what should we expect?

Northwest CASC

SW Biological Science Center

- Soil moisture in big sagebrush ecosystems
- Impact of changing climate
- Implications for vegetation

Soil moisture in sagebrush systems

Soil moisture in sagebrush systems

- Seasonal water dynamics defined by cool season recharge of soil water
- Summer dry period in top soil layers

Schlaepfer et al. (2012) Ecohydrology

Soil moisture in sagebrush systems

- Seasonal water dynamics defined by cool season recharge of soil water
- Summer dry period in top soil layers
- More transpiration from bottom than top soil layers
- Sagebrush ecohydrological niche: utilization of deep, seasonally-stored water

Temperature

Temperature

• Robust increases in all places & all seasons

• Perhaps slightly greater increases in north & summer

Impacted by $\uparrow T$

- growing season length
- frost dates
- vapor pressure deficit (VPD)
- potential evapotranspiration (PET)
- meteorological
 drought & aridity
 indices

Precipitation

Precipitation

- Changes are generally not robust across models
- Only small changes or modest increases in most places

200

100

0

Wetter winters

• Earlier spring green-up

Wetter winters

- Earlier spring green-up
- Earlier senescence

Wetter winters

• Earlier spring green-up

- Longer (& hotter) summer dry soil periods
- Earlier senescence

Bradford et al. 2020. Global Change Biology

Soil moisture & plant types

Sala et al 1997 -> Renne et al 2019

Soil moisture & plant types

Sala et al 1997 -> Renne et al 2019

Within the sagebrush region, seasonality of moisture influences balance between shrubs & grasses

Future climate:

Increased winter moisture in most places...

...may sustain existing regional gradients in shrub-grass abundance

Implications ... for sagebrush

Schlaepfer et al. (2011) Ecohydrology

Palmquist et al. (2021) Global Change Biology

25

250

Implications ... for sagebrush

Big sagebrush likely to remain climatically viable within much of the biome*

Potential declines in some areas

(Schlaepfer et al 2011, Still & Richardson 2015)

Schlaepfer et al. (2011) Ecohydrology

Palmquist et al. (2021) Global Change Biology

Implications ... for perennial grasses

Implications ... for perennial grasses

Future temperatures more consistent with warm-season (C4) perennial grasses than cool season (C3) perennials (Havrilla et al. 2023)

Cool season grasses may decline and warm season grasses <u>might</u> increase (Palmquist 2021)

Implications ... for Resistance & Resilience (R&R)

Implications ... for Resistance & Resilience (R&R)

Implications ... for Resistance & Resilience (R&R)

High Schlaepfer et al In Review.

Likely declines in R&R over much of the sagebrush region

Take home messages

Take home messages

Sagebrush vegetation is shaped by seasonal temperature & moisture

Rising temperatures -> wetter winters, earlier spring, & longer hotter summer.

Regional gradients of seasonal moisture availability likely to be maintained

jbradford@usgs.gov drylandecology.org

Take home messages

Sagebrush vegetation is shaped by seasonal temperature & moisture

Rising temperatures -> wetter winters, earlier spring, & longer hotter summer.

Regional gradients of seasonal moisture availability likely to be maintained

Potential vegetation impacts:

- Sagebrush decline in only some parts of the region
- Perennial grass shifts from cool season to warm season species
- Decreased ecological resistance to cheatgrass & resilience to wildfire