INCORPORATING FUTURE CLIMATE PROJECTIONS INTO ADAPTATION PLANNING A LAYMAN'S GUIDE

CLIMATE PROJECTIONS – WHAT ARE THEY?

 General – any description of the future climate and the pathway leading to it.

 Specific – model-derived estimates of future climate

THERE ARE MANY FUTURE PROJECTIONS!

Which one do I choose? Which one is the best?

WHY SO MANY PROJECTIONS?

- Human / Societal Action
 - How much emissions? How much development?
- Scientific
 - What don't we understand well yet?
- Global to Local
 - How to determine what global change means locally?

Why science teachers should not be given playground duty.

TOUGH DECISIONS AHEAD

GFDL CM 2.6 Ocean Simulation Climate is Physics

Things like:

- Conservation of momentum
- Conservation of mass $\frac{Du}{Dt} fv = -\frac{\partial \phi}{\partial x} F_x$
- Conservation of energy $\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial \omega}{\partial p} = 0$
- Conservation of water $\frac{\partial T}{\partial t} + u \frac{\partial T}{\partial x} + v \frac{\partial T}{\partial y} + \omega (\frac{\partial T}{\partial p} + \frac{RT}{pc_p}) = \frac{J}{c_p}$

- Ideal Gas Law $p = \rho RT$

The equations are converted to a form where they can be programmed for computers to solve.

GLOBAL CLIMATE MODELS (GCMS)

- GCMs are <u>not</u> trying to predict the weather on any given day.
- Instead we want to understand how weather on average will change given some changes in external forcing.
 - What happens if CO₂ doubles?

15°

THERE ARE MANY MODELS OUT THERE! WHY?

FOR EXAMPLE... LET'S TAKE <u>CLOUD FORMATION</u>

A COUPLE WAYS TO REPRESENT CLOUD FORMATION

$C = 5.13 \times T$

$C = 4.82 \times T$

...AND THERE ARE MANY, MANY MORE PROCESSES!

DOWNSCALING

Observations – January Climatology

Map Created: November 2002

0 4 8 16 24 32 Kilometers Copyright (c) 2000 - 2002 OSU Spatial Climate Analysis Service

DOWNSCALING

- Helps answer stakeholders' questions about how the climate will change in their location (i.e., impacts assessments) & better represent local climates

Used to increase the resolution of global climate model

LOCAL CLIMATE EXPERTS HELP ANSWER QUESTIONS LIKE....

- Which climate projections are right for you?
- What do the projections say (for your area and system, uniquely)?
- trust?
- What caveats are important, and how to consider them in your planning?
- system?*

...the answers to each are unique for <u>each application</u>!

How well can we trust the projections? What can/can't we

What impacts might these changes in climate have on my

* using our network of impacts research collaborators (ecologists, biologists, hydrologists, etc.)

NOW IT'S YOUR TURN!

Your group represents natural resource managers overseeing a sagebrush area of concern in the Great Western Sagebrush State.

You have been tasked with the following:

- using climate model projections.
- Resist-Accept-Direct framework).

- Assess the future climate (precipitation) and potential risk of increased wildfire, cheatgrass expansion, and woody encroachment

- Provide a recommendation about managing sagebrush (using the

Background Information

- The sagebrush area is a vast and biodiverse ecosystem for your state.
- If annual precipitation drops below 20% of the historical average, there is a significant increase in wildfire conditions and cheatgrass expansion.
- If annual precipitation increases above 20% of the historical average, there is a significant risk of woody encroachment.
- Your group is interested in maintaining the current sagebrush ecosystem as much as feasible.
- You have limited funding available for implementing management strategies.

Assess Future Climate

Climate Futures →	Much Drier	Drier	Slightly Drier	No Change	Slightly Wetter	Wetter	Much Wetter
Mid-Century							
Late-Century							

- And resulting implications for sagebrush ecosystem.

Identify Possible Management Strategies

Management Strategy

Near-term Costs

Long-term costs

- What is your final recommendation? Might it change in long-term future?

Resist	Accept	Direct

<u>Resist-Accept-Direct Framework</u>

- **Resist:** Managers focus on <u>maintaining</u> — <u>current historical</u> ecosystem structure and function.
- Accept: Managers do not intervene and allow the ecosystem structure and function to emerge from ongoing transformations.
- **Direct:** Managers <u>actively steer</u> the transformation towards a particular ecosystem structure and function

Future Change in Average Annual Precipitation (%) Late-Century (2061-2090)

Future Change in Average Annual Precipitation (%) Late-Century (2061-2090)

Future Change in Average Annual Precipitation (%)

Climate Futures →	Much Drier	Drier	Slightly Drier	No Change	Slightly Wetter	Wetter	Much Wetter
Mid-Century							
Late-Century							

	Resist	Accept	Direct
Management Strategy			
Near-term Costs			
Long-term costs			

Future Change in Average Annual Precipitation (%)

TOOLS YOU CAN USE

- USGS National Climate Change Viewer (NCCV)
- USGS GeoData Portal
- Assistance for Data usage
 - DOI Climate Adaptation Science Centers
 - USDA Climate Hubs
 - Program)

Climate Mapping for Resilience and Adaptation (CMRA) Tool

NOAA CAP programs (Southern Climate Impacts Planning)

USGS NCCV

Chart type Raw values Changes

https://www.usgs.g ov/tools/national-<u>climate-change-</u> viewer-nccv

National Climate Change Viewer

Dallas, Texas Precipitation for Multi-Model Mean

-O- SSP245 (2075-2099)

-O- SSP370 (2075-2099)

-O- SSP585 (2075-2099)

-O- 1981-2010

TOOLS YOU CAN USE

- USGS National Climate Change Viewer (NCCV)
- USGS GeoData Portal
- Assistance for Data usage

Climate Adaptation Science Centers

Climate Mapping for Resilience and Adaptation (CMRA) Tool

Partnerships Program

