Day 1 Session 2 How to Use the Climate Toolbox

North Central Climate Adaptation Science Center

John Guinotte, USFWS (Region 6)

Katherine Hegewisch, University of California, Merced

Imtiaz Rangwala, University of Colorado, NC CASC

OUTLINE

- Climate Toolbox: Datasets, Metrics and Tools
- Incorporating Future Climate and Uncertainty in Impacts Assessment
- Application: Using Scenario Climate Information for SSAs
- Hands-On Activity

The Climate Toolbox

The Climate Toolbox

A collection of web tools for visualizing past and projected climate and hydrology of the contiguous United States of America.

The Climate Toolbox

Applications

A collection of tools for addressing questions relating to Agriculture, Climate, Fire Conditions, and Water.

Historical Data in The Climate Toolbox

Toolbox - Historical Data

Climate Dataset gridMET - a blend of satellite & ground station data (1979-Yesterday)

- Daily data from:
- Continental USA (4-km, 2.5 mi grids, 1/24-deg)

2.5 mile	Grid cell
	2.5 mile

Solar Radiation

Surface Weather:

Humidity

Wind

Temperature Precipitation

Hydrology Modeling

Variable Infiltration Capacity (VIC) Model (1920-Yesterday)

UCLA Surface Hydrology Group

Toolbox - Historical Data

Climate Metrics

_

- TemperaturePrecipitation
- Humidity
- Wind
- Radiatio
- Radiation

Ecology Metrics

• Day of First Fall Freeze

- Day of Last Spring Freeze
- Growing Season
- Palmer Drought Severity Index
- Standardized Precipitation Index

Water Metrics

Fire Danger Metrics

- Soil moisture
- Total moisture
- Snow water equivalent
- Runoff

- Days since 0.1" precipitation
- 100-hour fuel moisture
- Vapor Pressure Deficit

Historical Data Tools in The Climate Toolbox

Toolbox- Climate Tracker Tool

Historical Climate Tracker

Track historical climate variability for a location in the contiguous USA.

Location: Boulder, CO (40.0150° N, 105.2705° W)

Documentation Cite Tool Take Tour

Toolbox - Climate Scatter Tool

Historical Climate Scatter

View historical climate variability in a scatterplot for a location in the contiguous USA.

Location: Boulder, CO (40.0150° N, 105.2705° W)

Climate Toolbox, Data Source: gridMET (UC Merced)

· Hover over symbols on graph to see values.

Click on labels in legend to remove/add data series on graph.

Documentation Cite Tool Take Tour

Future Projection Data in The Climate Toolbox

Global Climate Simulations

Scientists use computer simulations to conduct experiments and test hypotheses about our changing climate.

Simulations of global weather

- Atmosphere
- Ocean
- Land surface
- Cryosphere

Future Climate Projections

The Intergovernmental Panel on Climate Change (IPCC) created the Coupled Model Inter-Comparison Project (CMIP) to create an ensemble of future climate projections.

- phase 5 (CMIP5) completed in 2011
 phase 6 (CMIP6) completed in 2021

Global Climate Models

Over 20 climate modeling centers contribute outputs to CMIP.

Climate Outputs

Models provide daily outputs of temperature, precipitation, humidity, wind, radiation.

Model	Country	Model	Country
ACCESS1-0	Australia	CCSM4	U.S.A.
CSIRO-Mk3-6-0	Australia	CESM1-BGC	U.S.A.
CanESM2	Canada	CESM1-CAM5	U.S.A.
bcc-csm1-1	China	* GFDL-CM3	U.S.A.
BNU-ESM	China	* GFDL-ESM2G	U.S.A.
FGOALS-g2	China	GFDL-ESM2M	U.S.A.
FIO-ESM	China	* ³ GISS-E2-R	U.S.A.
CNRM-CM5	France	MIROC5	Japan 📃 🔵
IPSL-CM5A-LR	France	MIROC-ESM	Japan 💽
IPSL-CM5A-MR	France	MIROC-ESM-CHEM	Japan 💽
MPI-ESM-LR	Germany	MRI-CGCM3	Japan 💽
CMCC-CM	Italy	HadGEM2-CC	U.K.
NorESM1-M	Norway	HadGEM2-ES	U.K. 🔀
inmcm4	Russia	HadGEM2-AO	Korea 🌏

Future Climate Experiments

Each model runs simulations of global weather for historical and future time periods.

Historical Simulations

1950 - 2005

Historical simulations are initialized with pre-industrial conditions.

Historical -

Pre-industrial greenhouse gas concentrations

Future Simulations

2006 - 2100

Future simulations assume an emission pathway to 2100.

RCP8.5 - "High emissions"

is the highest baseline emissions scenario in which emissions continue to rise throughout the twenty-first century

RCP4.5 – "Intermediate emissions"

a moderate emissions scenario in which emissions peak around 2040 and then decline

Statistical Downscaling

In downscaling, biases are removed using statistics from a training dataset and the resolution of the gridded data is increased.

Coarse Model Outputs

- Increase resolution of data
- Remove or reduce biases

Finer Resolution Data

~2.5 mile x ~2.5 mile grid cells

~200 mile x ~200 mile grid cells

MACA (Multi-Variate Adaptive Constructed Analogs) downscaled CMIP5 outputs using gridMET as training dataset. (Abatzoglou, 2011)

Future Climate Projections

- Global climate models: 20 GCMS from CMIP5
- Scenarios: Historical, RCP 4.5, RCP 8.5
- Downscaling: MACA (Abatzoglou, 2011)
- Training data: gridMET (1979-2012)
- Spatial coverage: continental USA (4-km, 2.5 mi)
- Daily projections (2020-2099)

Climate Metrics

- Temperature
 - Precipitation
 - Humidity
 - Wind
 - Radiation

Ecology Metrics

- Coldest Winter Day
- Hottest Summer Day
- Day of First Fall Freeze
- Day of Last Spring Freeze
- Growing Season
- Days of Max Temperature>86F

Water Metrics

- Soil moisture
- Total moisture
- Snow water equivalent
- Runoff
- Streamflow

Fire Danger Metrics

- Days of Extreme Fire Danger
- 100-hour fuel moisture
- Vapor Pressure Deficit

Toolbox - Find Your Variable Tool

Climate Toolbox APPLICATIONS - TOOLS - DATA - VIDEOS CASE STUDIES TOOL SUMMARIES GUIDANCE NEWS CONTACT

Variable Lookup Find which tools in the Climate Toolbox have information on your variable of interest.

Documentation Cite Tool

Future Data Tools in The Climate Toolbox

Toolbox - Future Boxplots Tool

Toolbox - Future Climate Scatter Tool

Future Climate Scatter

View a scatterplot of future projections for a location in the contiguous USA.

Location: Boulder, CO (40.0150° N, 105.2705° W)

Documentation Cite Tool Take Tour

Toolbox - Climate Mapper Tool

Climate Mapper

Documentation Example Cite Tool Take Tour

Toolbox - Future Scenarios Tool

- Select location of habitat.
- Select future climate scenarios from GCMs, RCPs.
- Select summary climate metrics.

Future Climate Scenarios

Location: Moscow, ID (46.7324° N, 117.0002° W)

Choose Location -	Choose Seasonal Climate Metrics-	Choose Annual Climate Metrics-
Point Location	Check metrics to add to report.	Check metrics to add to report.
O Rectangular Area	Metric #1	Metric #1
OUS Hydrologic Watersheds (HUC8)	Winter (Dec-Jan-Feb)	Coldest Winter Day
O US Eco Regions	Mean Temperature	
O US Tribal Lands		Metric #2
O Custom Boundary	Metric #2	Hottest Summer Day
CHOOSE LOCATION	Winter (Dec-Jan-Feb)	
STOCK EDUITOR	Precipitation	Metric #3
		Day of First Fall Freeze
Choose Scenarios-	Metric #3	
	Winter (Dec-Jan-Feb)	Metric #4
Future time period	Potential Evapotranspiration	Day of Last Spring Freeze
2020 (2010-2039)	and the second s	
	Metric #4	Metric #5
Check scenarios and models to add to report	Winter (Dec-Jan-Feb)	 Length of Growing Season
Scenario 1	Maximum Temperature	
Hot and Wet		□ Metric #6
PCP 4.5 (Peduced Emissions Scerv CanESM2 (Canada)	Metric #5	Cum. Growing Degree Days Since Jan 1 (32 °F base)
HCF 4.5 (Reduced Emissions Scer+ Carleswiz (Carlada)	Winter (Dec-Jan-Feb)	
Scenario 2	Minimum Temperature	✓ Metric #7
Scenario 2		Cum. Growing Degree Days Since Jan 1 (37.4 °F base)
HOL	Metric #6	
RCP 4.5 (Reduced Emissions Scerv CNRM-CM5 (France)	Winter (Dec-Jan-Feb)	✓
	Wind Speed	 Cum. Growing Degree Days Since Jan 1 (41 °F base)
Scenario 3	3 3	
Warm and Wet	Metric #7	Metric #9
RCP 4.5 (Reduced Emissions Scerv GFDL-ESM2M (USA)	Winter (Dec-Jan-Feb)	 Cum. Growing Degree Days Since Jan 1 (50 °F base)
	Radiation	
Scenario 4		Metric #10
Scenario 4	Metric #8	Days With Max. Temperature Above 86°F
RCP 4.5 (Reduced Emissions Scer IPSL-CM5A-MR (France)	Winter (Dec-Jan-Feb)	•
	Radiation	Metric #11
Scenario 5		Days With Max. Temperature Above 86°F
Scenario 5	Metric #9	
	l fuir a les la less	

Documentation Cite Tool Take Tour

Toolbox - Future Scenarios Tool

Climate Scenarios

The summary table below describes changes in the future climate by 2020 (2010-2039) relative to the 1971-2000 period under climate scenarios: **Hot and Wet** (CanESM2.rcp45), **Hot** (CNRM-CM5.rcp45), **Warm and Wet** (GFDL-ESM2M.rcp45)

Climate Metric	Hot and Wet	Hot	Warm and Wet	Historical Value
Winter Mean Temperature (°F) (change relative to historical by °F)	35.71 (3.01)	34.43 (1.73)	33.54 (0.84)	32.70
Winter Precipitation (% change relative to historical)	2.35 (12.98)	2.51 (20.67)	2.19 (5.29)	2.08
Winter Potential Evapotranspiration (% change relative to historical)	4.66 (21.35)	4.20 (9.38)	3.96 (3.13)	3.84
Winter Maximum Temperature (°F) (change relative to historical by °F)	47.89 (2.26)	46.82 (1.19)	45.97 (0.34)	45.63
Coldest Winter Day (relative to historical by °F)	3.59 (3.09)	5.19 (1.49)	4.37 (2.31)	6.68
Hottest Summer Day (relative to historical by °F)	100.27 (3.46)	98.03 (1.22)	96.36 (-0.45)	96.81
Day of First Fall Freeze (relative to historical by days)	Oct. 10 (9.30)	Oct. 10 (9.30)	Sept. 25 (-5.70)	Sept. 30
Day of Last Spring Freeze (relative to historical by days)	May 1 (-4.50)	Apr. 24 (-11.50)	May 4 (-1.50)	May 5
Length of Growing Season (relative to historical by days)	162.00 (13.80)	169.00 (20.80)	144.00 (-4.20)	148.20

Quantities and projected changes described above are for the location at 40.015°N; 105.2705°W and a mean elevation of ?? ft.. Winter is Dec, Jan,

Feb; Spring is Mar, Apr, May; Summer is Jun, Jul, Aug and Fall is Sep, Oct, Nov.

Dataset: MACA-METDATA v2 (4-km downscaled climate projections), VIC (v4.1.2) forced by MACAv2-LIVNEH (6-km hydrology projections) and gridMET (4-km historical).

Geospatial Layer Downloads

Climate Scenarios by 2020 (2010-2039) for the {Name of Region} {Name of Species}

The table below provides links to download the geospatial raster data (all of the contiguous US) of the future climate projections by 2020 (2010-2039) relative to the 1971-2000 period under climate scenarios: **Hot and Wet** (CanESM2.rcp45), **Hot** (CNRM-CM5.rcp45), **Warm and Wet** (GFDL-ESM2M.rcp45), **Scenario 4** (IPSL-CM5A-MR.rcp45), **Scenario 5** (20CMIP5ModelMean.rcp45)

Climate Metric	Hot and Wet	Hot	Warm and Wet	Scenario 4	Scenario 5	Historical Value
Winter Mean Temperature	Link	Link	Link	Link	Link	Link
Winter Precipitation	Link	Link	Link	Link	Link	Link
Winter Potential Evapotranspiration	Link	Link	Link	Link	Link	Link
Coldest Winter Day (relative to historical by °F)	Link	Link	Link	Link	Link	Link
Hottest Summer Day (relative to historical by °F)	Link	Link	Link	Link	Link	Link
Day of First Fall Freeze (relative to historical by days)	Link	Link	Link	Link	Link	Link

Quantities and projected changes described above are for the location at 46.7324*N; 117.0002*W and a mean elevation of ?? ft... Winter is Dec, Jan, Feb; Spring is Mar, Apr, May; Summer is Jun, Jul, Aug and Fall is Sep, Oct, Nov.

Dataset: MACA-METDATA v2 (4-km downscaled climate projections), VIC (v4.1.2) forced by MACAv2-LIVNEH (8-km hydrology projections) and gridMET (4-km historical).

Incorporating Future Climate and Uncertainty in Impacts Assessment

Current State of Practice

It's a tricky business...but one which we must carry out with the best available information and understanding

Challenges

- **1. Uncertainty:** Arising from differences across climate models, emission scenarios, and choice and structure of ecological methods
- **2. Complexity:** *Complex interactions between climate and ecological process and their relevant spatiotemporal scales (known unknowns and unknown unknowns)*
- **3. Constraints:** *Availability of suitable observed and modeled data at appropriate spatiotemporal scales*

Article

Uncertainty, Complexity and Constraints: How Do We Robustly Assess Biological Responses under a Rapidly Changing Climate?

Imtiaz Rangwala ^{1,*}⁽²⁾, Wynne Moss ^{1,2}, Jane Wolken ¹, Renee Rondeau ³, Karen Newlon ⁴, John Guinotte ⁴ and William Riebsame Travis ^{1,5}

Uncertainty from emission scenarios and inter-model differences

Different Emissions Scenarios

Sustainability 2022, 14(7), 4252; https://doi.org/10.3390/su14074252

https://commons.wikimedia.org/wiki/File:All_forcing_agents_CO2_equivalent_concentration.svg

Differences in temperature projections across emission scenarios become important after 2050

Emission scenarios have no significant impact on total precipitation projections; natural climate variability has a large influence

Climate Variability/Stochasticity

climate

→ Fluctuations (ups and downs around a long-term mean) in climatic conditions on time scales of months, years, decades, centuries and beyond

Changes in Annual Temperature and Precipitation in southwestern Colorado

Article

Uncertainty, Complexity and Constraints: How Do We Robustly Assess Biological Responses under a Rapidly Changing Climate?

POSSIBLE FUTURES

The Intergovernmental Panel on Climate Change (IPCC) uses scenarios called pathways to explore possible changes in future energy use, greenhouse-gas emissions and temperature. These depend on which policies are enacted, where and when. In the upcoming IPCC Sixth Assessment Report, the new pathways (SSPs) must not be misused as previous pathways (RCPs) were. Business-asusual emissions are unlikely to result in the worst-case scenario. More-plausible trajectories make better baselines for the huge policy push needed to keep global temperature rise below 1.5 °C.

150

*The International Energy Agency (IEA) maps out different energy-policy and investment choices. Estimated emissions are shown for its Current Policies Scenario and for its Stated Policies Scenario (includes countries' current policy pledges and targets). To be comparable with scenarios for the Shared Socioeconomic Pathways (SSPs), IEA scenarios were modified to include constant non-fossil-fuel emissions from industry in 2018. [†]Approximate global mean temperature rise by 2100 relative to pre-industrial levels. +SSP5-8.5 replaces Representative Concentration Pathway (RCP) 8.5.

On the likelihood of emission scenarios

"high-end [emission] scenarios have become considerably less likely since AR5 but cannot be ruled out. It is important to realise that RCP8.5 and SSP5-8.5 do not represent a typical 'business-as-usual' projection but are only useful as highend, high-risk scenarios"

IPCC AR6 WGIII Report

Hausfather & Peters. 2020

Scenario Planning to incorporate future climate uncertainty into impact assessment

Artic

Uncertainty, Complexity and Constraints: How Do We Robustly Assess Biological Responses under a Rapidly Changing Climate?
Scenario-Based Climate Change Impact Assessment

Figure 1. Process flow diagram of a typical approach for conducting biological impact assessments under different future climate scenarios. The curved arrows demonstrate the iterative (i.e., non-linear) process of integrating climate and ecology methods in conservation projects (e.g., Case Study 1 and 2 in Appendix A).

Uncertainty, Complexity and Constraints: How Do We Robustly Assess Biological Responses under a Rapidly Changing Climate? MDPI

Imtiaz Rangwala ^{1,4}⁽⁵⁾, Wynne Moss ^{1,2}, Jane Wolken ¹, Renee Rondeau ³, Karen Newlon ⁴, John Guinotte ⁴ and William Riebsame Travis ^{1,5}

- Selecting and working with specific future climate scenarios (or climate futures)
- Use of bivariate scatter plot to select future climate scenarios

Climate Toolbox can help you do these kinds of scenario selections!

SSA climate metric table

Climate Scenarios by 2050 for the White-tailed Ptarmigan Range in Southern Colorado

The summary table below describes changes in the future climate by 2050 (2030-2069) relative to the 1971-2000 period under three climate scenarios: Very Hot and Dry (IPSL-CM5A-MR.rcp85), Hot (CCSM4.rcp45), and Hot and Very Wet (MIROCS.rcp45)

Climate Metric	Time Period	Very Hot and Dry	Hot	Hot and Very Wet	Historical Value
	Annual	8	4	6	33 °F
	Winter	7	4	6	19°F
Mean Temperature (°F)	Spring	7	4	10	31°F
	Summer	8	4	4	49°F
	Fall	8	5	5	34 °F
	Annual	-18	0	6	38 inches
	Winter	-10	5	-6	11 inches
Precipitation (%)	Spring	-22	-1	41	10 inches
	Summer	-27	-2	28	7 inches
	Fall	-16	-3	-9	10 inches
	Annual	8	4	6	47°F
	Winter	7	3	6	32 °F
Daytime Maximum Temperature (°F)	Spring	8	4	10	45°F
	Summer	8	5	3	63 °F
	Fall	9	5	5	47°F
	Annual	7	3	6	20°F
	Winter	7	4	7	5°F
Daytime Minimum	Spring	6	3	9	17°F
Temperature (*F)	Summer	8	3	4	36°F
	Fall	8	3	4	22 °F
1107 1279-20 141 141 141 141	January 1	-27	-13	-28	9 inches
Snow Water Equivalent	April 1	-17	-7	-17	21 inches
(%)	May 1	-37	-14	-37	24 inches
	Spring	-9	-1	4	22 inches
Soil Moisture (%)	Summer	-19	-8	-10	24 inches
	Fall	-25	-8	-6	21 inches
Potential	Summer	20	11	7	16 inches
Evapotranspiration (%)	Fall	54	28	28	6 inches

Climate	Metric	Very Hot and Dry	Hot	Hot and Very Wet	Historical Value	
Coldest Wi	nter Day (°F)	-9	-15	-10	-18	
(warmer relative	to historical by °F)	(9)	(3)	(8)		
Hottest Sum (warmer relative	imer Day (°F) to historical by °F)	80	//	(3)	72	
#Days with daytir	ne low above 32°F	147	118	133	95	
(increase	s in #days)	(52)	(23)	(38)		
First Fa (later relative to b	Il Freeze vistorical by #days)	Sep 21 (42)	Sep 10 (31)	Sep 14 (35)	Aug 10	
Last Spri	ng Freeze	Jun 4	Jun 17	Jun 13	lun 21	
(earlier relative to	historical by #days)	(17)	(4)	(8)	50011	
Growing Seaso	n Length (#days)	109	90	93	64	
(higher relative to	historical by #days)	(45)	(26)	(29)		
Growing Degree D	ays (°F; 32°F base)	4098	3276	3517	2381	
Frequency of Sever	e Drought like 2002	Almost every year	Every 3-4 years	Every 6 years		
Duration of Severe	Duration of Severe Drought like 2002		1-2 years	1-2 years	1 year	
"High" Fire Danger Days		128	86	82	73	
(higher relative to historical by #days)		(55)	(13)	(11)	,,,	
"Very High" Fire Danger Days		84	48	44	37	
(higher relative to historical by #days)		(47)	(11)	(7)		
"Extreme" Fir	e Danger Days	4/	19	14	11	
Inigher relative to	nistorical by #days)	(56)	(9)	(5)		
Very Hot and Dry	 Very large increase i Hottest summer day Large reduction in sp Growing season and Monsoonal precipitation 	n annual and summer temperatur time high increases by 8°F; severe pring snowpack (May 1 SWE is 409 "High" fire danger days increase ation decreases significantly, but 2	es (8°F) with substantial e drought almost every ye 6 lower) by ~50 days 0% more intense rainfall	reduction in annual (-20%) and sum ear with extreme drought condition events when they occur	nmer (-30%) precipitation s lasting up to 6 years	
Hot	Moderate increase in annual temperature (4 ^{org}) but no change in precipitation amounts Hottest summer daytime high increases by 5 ^{org} ; severe drought every 6 years with extreme drought conditions lasting up to 2 years Moderate reduction in spring snowpack (May 13 WE is 15% lower) Growing season increases by > 3 weeks and "high" fire danger days increase by 2 weeks Monsonal precipitation decreases ever sidehtly, but 10% more intense rainfall events					
Hot and Very Wet	Monsoonal precipitation decreases very slightly, but 10% more intenser rainfall events Least increase in summer daytime high temperature (3°F) but extremely warm springs (10°F) d0% increase in spring precipitation and a high proportion of that falling as rain Spring runoff increases by 50%, but decline in summer flows; severe drought every 3-4 years with extreme drought conditions lasting up to 2 year Sorwhore rearon increases in 4 waker and "thin" for donose draw increase high 14 weark					
	Monsoonal precipita	ation increases very substantially (+30%) with 10% greater	intensity		

Values and projected changes described above are for the location at 37.8125/NJ; 107.7819/W and a mean elevation of 10,750 ft. Winter is Dec, Jan, Feb; Spring is Mar, Apr, May; Summer is Jun, Jul, A and Fall is Sep, Oct, Nov. Dataset: MACA metdata v2 (4-km downscaled climate projections), VIC (v4.1.2) forced by MACAv2-LIVNEH (6-km hydrology projections) and gridMET (4-km historical).

Imtiaz Rangwala (<u>Imtiaz Rangwala@colorado.edu</u>) CIRES, University of Colorado, Boulder; North Central Climate Adaptation Science Center

SSAs where the climate toolbox has been used

#	SSA	SSA Year		
1	Wolverine (CO, MT)	2017	Steve Torbit, John Guinotte	
2	Skiff milkvetch (CO)	2018	Dara Taylor, Sarah Backsen, John Guinotte	
3	Southern White-tailed Ptarmigan (WY, CO, NM)	2018-19	Karen Newlon, John Guinotte	
4	Rocky Mountain Monkey Flower	2018-19	Dara Suich	
5	Colorado North Park Phacelia	2020	Kurt Broderdorp, Creed Clayton	
6	Silverspot butterfly (CO)	2020	Terry Ireland, Creed Clayton	
7	Several listed species in Mojave Desert UT	2020	Hilary Whitcomb, John Guinotte, Kimberly Smith	
8	DeBeque Phacelia and CO Hookless Cactus	2020	Alexandra Kasdin, Aimee Crittendon, Creed Clayton, John Guinotte	
9	Brandegee's Buckwheat (CO)	2021	Alexandra Kasdin, Laura Archuleta, John Guinotte	
10	Cisco and Isely's milkvetch (UT)	2021	Karen Newlon, John Guinotte	
11	Regal Fritillary Butterfly (central US, PA)	2021	Craig Hansen, Kim Daniel, Natalie Gates, Pamela Shellenberger, Sarah Furtak, Steven Choy, Brooke Stansberry, John Guinotte	
12	Western Bumble Bee	2021	Tabitha Graves, William Janousek	
13	Narrow Foot Hygrotus Diving Beetle	2022	Julie Reeves, Alex Kasdin, John Guinotte	
14	Canada Lynx	2022 (?)	Jim Zelenak, John Guinotte	

Wolverine (CO, MT)

Canada Lynx

Silverspot butterfly (CO)

Southern White-tailed Ptarmigan Western Bumble Be

Hookless Cactus

Cisco and Isely's milkvetch

Monkey Flower

Phacelia

Recent publication outlining the process and tools

Copyright © 2021 by the authors. 1. Introduction

Licensoe MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Capative Commons creativecommons.org/licenses/by/

The Earth's climate is experiencing rapid heating caused by an increasing accumulation of human-induced greenhouse gases in the atmosphere. The resulting climatic changes, which are unprecedented in at least the last 2000 years, are expected to continue Attribution (CC BY) license (https:// and further intensify in coming decades as the concentrations of atmospheric greenhouse gases rise [1]. Shifts in large-scale climate regimes and their influence on climate and weather extremes experienced at local-to-regional scales are expected to drive significant Uncertainty, Complexity and Constraints: How Do We Robustly Assess Biological Responses under a Rapidly Changing Climate?

Imtiaz Rangwala, Wynne Moss, Jane Wolken, Renee Rondeau, Karen Newlon, John Guinotte, William Riebsame Travis

2021, Climate

POSSIBLE FUTURES

The Intergovernmental Panel on Climate Change (IPCC) uses scenarios called pathways to explore possible changes in future energy use, greenhouse-gas emissions and temperature. These depend on which policies are enacted, where and when. In the upcoming IPCC Sixth Assessment Report, the new pathways (SSPs) must not be misused as previous pathways (RCPs) were. Business-as-usual emissions are unlikely to result in the worst-case scenario. More-plausible trajectories make better baselines for the huge policy push needed to keep global temperature rise below 1.5 °C.

150

*The International Energy Agency (IEA) maps out different energy-policy and investment choices. Estimated emissions are shown for its Current Policies Scenario and for its Stated Policies Scenario (includes countries' current policy pledges and targets). To be comparable with scenarios for the Shared Socioeconomic Pathways (SSPs), IEA scenarios were modified to include constant non-fossil-fuel emissions from industry in 2018. Approximate global mean temperature rise by 2100 relative to pre-industrial levels. #SSP5–8.5 replaces Representative Concentration Pathway (RCP) 8.5. Hausfather & Peters, 2020

FWS definition of foreseeable future

"foreseeable future" to extend "only so far into the future as the Service can reasonably determine that both the future threats and the species' responses to those threats are likely."

Next Big Challenge to Impact Assessment

Multiple ecological/biological response scenarios are plausible for a given climate scenario!!!

A Science Agenda to Inform Natural Resource Management Decisions in an Era of Ecological Transformation

SHELLEY D. CRAUSBAY, HELEN R. SOFAER, AMANDA E. CRAVENS, BRIAN C. CHAFFIN, KATHERINE R. CLIFFORD, JOHN E. GROSS, CORRINE N. KNAPP, DAVID J. LAWRENCE, DAWN R. MAGNESS, ABRAHAM J. MILLER-RUSHING, GREGOR W. SCHUURMAN, AND CAMILLE S. STEVENS-RUMANN

Hypothetical workflow for developing ecological scenarios

Climate Toolbox Activity: Retrieving Scenario Data

Regal Fritillary

Location of Interest: Prairie Coteau (45.8766 N Lat , 98.2591 W Long)

Climate Variables of Interest:

- Days with heat index > 105F and
- Jun-Aug precipitation

Futures of Interest:

- RCP 4.5
- Mid-Century (2040-2069)

Climate Toolbox Activity

- 1. ClimateToolbox.org
- 2. Future Scatter Tool
 - Select location
 - Select variables of interest
 - Select future emission scenario
 - Look at the spread of the model results
 - Choose 2 divergent models in the scatter of results
 - Record the model names & data in Scenario Table
 - Save the Scenario Table

3. Future Climate Scenario Tool

- Select location
- Select future emission scenario
- Select the model names from previous
- Select different variables
- Generate and save a report

Regal Fritillary (Prairie Coteau)

Regal Fritillary (Prairie Coteau)

Future Climate Scenarios

Location: 45.8766° N, 98.2591° W

Choose Location-	
Point Location	
O Rectangular Area	
	CHOOSE LOCATION
Choose Scenarios -	
Future time period	
Future time period 2050 (2040-2069)	~
Future time period 2050 (2040-2069) Check scenarios and m	vodels to add to report.
Future time period 2050 (2040-2069) Check scenarios and m Scenario 1	vodels to add to report.
Future time period 2050 (2040-2069) Check scenarios and m Scenario 1 Hot and Wet	~
Future time period 2050 (2040-2069) Check scenarios and m Scenario 1 Hot and Wet RCP 4.5 (Reduced Emi	vodels to add to report.

Scenario 2

Hot and Dry	
RCP 4.5 (Reduced Emissions Scenario)	~
HadGEM2-CC365 (United Kingdom)	~

Scenario 3

Warm and Wet

DCD / 5 (Doducod Emissions Sconario)

Check n	netrics to add to report.
Metrie	c #1
Winter (Dec-Jan-Feb)
Mean Te	emperature

Winter (Dec-Jan-Feb) Precipitation

Metric #3 Winter (Dec-Jan-Feb) Potential Evapotranspiration

Metric #4 Winter (Dec-Jan-Feb) Maximum Temperature

Metric #5 Winter (Dec-Jan-Feb) Minimum Temperature

Metric #6

Winter (Dec-Jan-Feb) Wind Speed

Choose Annual Climate Metrics -	
Check metrics to add to report.	

Coldest Winter Day

Metric #2 Hottest Summer Day

Metric #3 Day of First Fall Freeze

Metric #4 Day of Last Spring Freeze

Metric #5 Length of Growing Season

Metric #6 Cum. Growing Degree Days Since Jan 1 (32 °F ba >

~

□ Metric #7 Cum. Growing Degree Days Since Jan 1 (37.4 °F t∨

Metric #8 Cum. Growing Degree Days Since Jan 1 (41 °F ba >

Climate Scenarios

The summary table below describes changes in the future climate by 2050 (2040-2069) relative to the 1971-2000 period under climate scenarios: Hot and Wet (CanESM2.rcp45), Hot and Dry (HadGEM2-CC365.rcp45)

Climate Metric	Hot and Wet	Hot and Dry	Historical Value
Winter Mean Temperature (°F)	23.24	23.67	14.82
(change relative to historical by °F)	(8.42)	(8.85)	
Winter Precipitation	2.13	1.89	1.53
(% change relative to historical)	(39.22)	(23.53)	
Winter Potential Evapotranspiration	0.66	0.70	0.20
(% change relative to historical)	(230.00)	(250.00)	
Winter Maximum Temperature (°F)	31.93	32.85	24.85
(change relative to historical by °F)	(7.08)	(8.00)	
Winter Minimum Temperature (°F)	14.56	14.48	4.80
(change relative to historical by °F)	(9.76)	(9.68)	
Winter Wind Speed	9.47	10.01	9.85
(% change relative to historical)	(-3.86)	(1.62)	
Coldest Winter Day (relative to historical by °F)	40.50 (13.67)	42.31 (11.86)	2 4.17
Hottest Summer Day	106.08	106.78	100.17
(relative to historical by °F)	(5.91)	(6.61)	
Day of First Fall Freeze (relative to historical by days)	Oct. 6 (5.05)	Oct. 11 (10.05)	Sept. 30
Day of Last Spring Freeze (relative to historical by days)	Apr. 25 (-7.75)	Apr. 20 (-12.75)	May 2
Length of Growing Season (relative to historical by days)	164.00 (12.80)	174.00 (22.80)	151.20
Days With Max. Temperature Above 86°F (relative to historical by days)	74.53 (38.33)	70.00 (33.80)	36.20

Quantities and projected changes described above are for the location at 45.8766°N; 98.2591°W and a mean elevation of ?? ft.. Winter is Dec, Jan, Feb; Spring is Mar, Apr, May; Summer is Jun, Jul, Aug and Fall is Sep, Oct, Nov.

Dataset: MACA-METDATA v2 (4-km downscaled climate projections), VIC (v4.1.2) forced by MACAv2-LIVNEH (6-km hydrology projections) and gridMET (4-km historical).

Documentation Cite Tool Take Tour

Conclusions/Wrap Up

Wrap Up

Extra Slides

Session 2:

How to Use the Climate Toolbox

75 min 8:50-10:05

Moderator: Christy Miller Hesed

Presenters:

Data/Analysis Tools: Imtiaz Rangwala (UC Boulder) John Guinotte (FWS) Katherine Hegewisch (UC Merced)

Resources: Climate Toolbox: https://climatetoolbox.org/

NC CASC Tools and Data: https://nccasc.colorado.edu/index.php /resources/tools **Goals:** Increased proficiency in accessing and using climate data and summaries to help your decision making.

Learn: Participate in a demonstration of climate science tools and how they apply the tools to your work

Do: Hands on use of a set of tools in the toolbox

Reflect: Do you want to discover more tools and how to use them? Are there tools you need but don't have?

Past Presentations to Pull Slides from

- February, 2022 FWS <u>Slides</u>
- April 2022 Climate 101 <u>Slides</u>
- December 2022 Stakeholder meeting <u>Slides</u>

Temperature

Precipitation

Climate Projections to Regional Impacts Often require use of multiple tools and data processing steps

Climate Projections to Impacts: Compounding of Uncertainty

Downscaling of GCM Climate Projections

- One main reason to do downscaling is to have data at the right scale to run an impacts model
- Bias correction + Increasing spatial resolution
- Different downscaled datasets could be appropriate for a particular assessment — <u>consult a climate scientist!</u>

An example of the downscaling process, converting coarse data to a higher resolution. Source: Databasin.org.

Sources of uncertainty in climate projections

Climate Variability

Climate and Weather Extremes!

Species Status Assessment Framework

Viability

- The SSA Framework is a different way of thinking about biological status assessments under the ESA.
- Its purpose is to describe the viability of a species in a way that supports our ESA decisions.
- Viability is the ability of a species to sustain populations in the wild over a biologically meaningful timeframe.

Species Status Assessment Framework

SSA Condition Category Table

	Habitat Needs	Demographi	c/Distribution Factors	Climate	
Analytical Unit Resiliency	Habitat Condition Index	Survivorship	Minimum Population Size Estimates (90% LCL)	Summer Water Deficit	Analytical Unit Resiliency Score
High (Healthy)	1.41 - 1.8	80% - 100%	> 10,000 Plants / AU	within 1 standard deviation of historic mean	2.34 - 3
Moderate	1.01 – 1.4	50% -80%	500-10,000 Plants / AU	within 2 standard deviations of historic mean	1.67 – 2.33
Low	0.6 - 1.00	0-50%	< 500 Plants / AU	2+ standard deviations of historic mean	1 - 1.66

Climate Toolbox Tools

Climate Toolbox Tools

ose Location +	39.7043 N, 107.7893 W
bint Location actangular Area S County Area S Hydrologic Watersheds (HUC8)	June-August Potential Evapotranspiration
ose Data •	22 1990 2000 2010 2010 1979-2015 1993 1979 2007 1985 1981
ical(Y)-Axis:	2 1 Alexandre 1996 - 2013 - 1997 - 1997 - 2005 - 2005
ine-August ~	2009 1991 1995
otential Evapotranspiration v	20
Units: inches v	1999 1997
zontai(A)-Axis.	19
vine-August v	
Unite: inches v	
Units. Inches •	2 3 4 5 6 7 8 ir
and Creat	
ige Graph*	June-August Precipitation
	Climate Toolbox, Data Source: gridMET (UC Me
mload -	
	 Hover over symbols on graph to see values.
mload aranhi	 Click on labels in legend to remove/add data series on graph.

SSA Condition Category Table

	Habitat Needs	Demographi	c/Distribution Factors	Climate	
Analytical Unit Resiliency	Habitat Condition Index	Survivorship	Minimum Population Size Estimates (90% LCL)	Summer Water Deficit	Analytical Unit Resiliency Score
High (Healthy)	1.41 - 1.8	80% - 100%	> 10,000 Plants / AU	within 1 standard deviation of historic mean	2.34 - 3
Moderate	1.01 – 1.4	50% -80%	500-10,000 Plants / AU	within 2 standard deviations of historic mean	1.67 – 2.33
Low	0.6 - 1.00	0-50%	< 500 Plants / AU	2+ standard deviations c <i>i</i> historic mean	1 - 1.66

		Optimisti	c Scenario			-
Analytical Units		Habitat Needs	Demographic / Distribution Factors		Climate	Analytical
		Habitat Condition Index	Species-level Survival	Minimum Population Size (90% LCL)	Summer Water Deficit*	Unit Resiliency
	Whitewater	High	High -	High	High	High
	Palisade	Moderate		Low	High	Aoderate
	Dominguez-Escalante	High		High	High	High
C alauna	North Fruita Desert	Moderate		Moderate	High	High
S. glaucus	Devil's Thumb	High		High	High	High
	Cactus Park	High		High	High	High
	Gunnison Gorge	Moderate		Moderate	High	High
	Gunnison River East	High		High	High	High
6 davusanii	Plateau Creek	High	Lligh	Moderate	High	High
S. gawsonii	Roan Creek	High	nign	High	High	High

Pessimistic Scenario						
Analytical Units		Habitat Needs	Demographic / Distribution Factors		Climate	Anabatical
		Habitat Condition Index	Species-level Survival	Minimum Population Size (90% LCL)	Summer Water Deficit	Unit Resiliency
S. glaucus	Whitewater	Moderate	Moderate	High	Moderate	l loderate
	Palisade	Low		Low	Moderate	Low
	Dominguez-Escalante	High		High	Moderate	High
	North Fruita Desert	Low		Moderate	Moderate	l loderate
	Devil's Thumb	High		Moderate	Moderate	loderate
	Cactus Park	Moderate		Moderate	Moderate	/ oderate
	Gunnison Gorge	Low		Moderate	Moderate	Moderate
	Gunnison River East	High		Moderate	Moderate	Moderate
S. dawsonii	Plateau Creek	Moderate	High	Moderate	Moderate	Moderate
	Roan Creek	High		High	Ioderate	High