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What might happen if
streams get hotter and drier?

“If warming 3-4°C occurs, a
substantial number of species in this
region could face extinction”
Matthews and Zimmerman 1990

Dewatering and fragmentation
interact as stressor for Great Plains
fish communities — Perkin et al. 2015
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Figure 5: Difference fields for mean daily minimum temperature (°C) between historical (1981-2005) and end-of-century (2075-2099) time

“olumns represent the GCMs (CCSM4, MIROCS, and MPI-ESM-LR, from left to right respectively); rows represent

ling methods, with CDFt on top and EDQM on bottom. Darker shades of red represent higher minimum temperature values. (a)

2CSM4, SD: CDFt. (b) Model: MIROCS, SD: CDFt. (¢) Model: MPI-ESM-LR, SD: CDFt. (d) Model: CCSM4, SD: EDQM. (¢) Model
MIROCS, SD: EDQM. (f) Model: MPI-ESM-LR, SD: EDQM.

Bertand and McPherson (2019) Advances in Meteorology



Here, we focus on two questions:

1)  How might water resources and the
distributions of stream fish in the Red River

change in future climate scenarios?

 Zamani Sabziet al. (2019) J. Hydrology — Regional Studies
 Gilletal. inreview

2)  How might we mitigate these impacts?

* ZamaniZabzi et al. (2019) Ecological Engineering
* Fovargue et al. in review
* Wineland et al. in review



We build on regional climate
downscaling (McPherson et al. 2016,
Betrand and McPherson 2018, 2019)
and hydrological modeling (Xue et al.
2016) for the Red River across climate
scenarios.

We focus on three GCMs (CCSMg,
MIROCs, MPI-ESM-LR) that span a

range of wet/dry bias among climate
models.
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Projected surface
water varies
among climate
scenarios, and
spatially within
each scenario.

Relative Runoff change in 2040-2060
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Runoff Change
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Percent change in surface runoff (2040-2060 vs. recent historical) across
nine climate scenarios.

Zamani Sabzi et al. (2019) Journal of Hydrology — Regional Studies



Pteronotropis hubbsi
Notropis atrocaudalis
Notropis bairdi
Ictalurus furcatus

How might species’ distributions | Lythrurus snelson
~ " . . acti OpSIS Storelana

change across climate scenarios? " Notrops potter
Micropterus dolomieu

Morone saxatilis

Gill et al. used a suite of climatic and Mac;’;{i;;f;’j;‘gg;j::
biophysical covariates to drive Notropis ortenburgeri
MaxEnt species distribution models. Macrhybopsis hyostoma
Hybognathus placitus

Notropis suttkusi
Percina copelandi

Kev Fesu |tS . Notropis perpallidus

Cyprinodon rubrofiuviatilis
Fundulus zebrinus

Notropis boops

* Changes in distribution for each EantropIs baoPe
species (historical vs. 2050) vary Micropterus punctulatus
among climate scenarios. Slheostoma radiosum

Notropis atherinoides
Phenacobius mirabilis
Lepomis cyanellus

* Uncertainty varies ~10x among Notropis stramineus
. Cyprinella lutrensis
S p ecles. Micropterus salmoides

Ameiurus melas
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Gill et al. in review



Common species (i.e.,
historically widespread)
show the greatest absolute
changes in distribution
across future climate
scenarios.

However, we could not
reject a null hypothesis that
absolute changes were
proportional to historical
distributional extent.
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Aggregating species outcomes
within each climate scenario
reveals hotspots of potential
species loss.

Despite climate uncertainty,
hotspots of species loss tend
to occur in same regions.

RCP 2.6, CCSM4 RCP 4.5, CCSM4 RCP 8.5, CCSM4
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Expected change in the number of species within the Red River basin by
the year 2050 across nine future climate scenarios, as projected by
MaxEnt. The value for each raster 1/8° cell represents the difference in
species’ probability of occurrence between the historical period and the
year 2050, summed across all species. Gill et al. in review



Spatial Planning Tools for Water
Conservation

Consider five water users on simple river

network. When and where might we
incentive users to consume less water?
Downstream reaches differ in societal
water needs and environmental water
needs, and actions propagate
downstream.

Goal: For a given budget, find the
optimal reservoir releases and portfolio
of water conservation projects that best
balance societal and environmental
water needs.

Zamani Sabzi et al. (2019) Ecological Engineering



Spatial planning tools for water
sustainability in the Red River
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Zamani Sabzi et al. (2019) Ecological Engineering



Prioritize societal water goals
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Zamani Sabzi et al. (2019) Ecological Engineering

1) By manipulating the weights
(relative importance) of
meeting societal vs.
environmental water needs, we
can find a tradeoff curve.

2) Even optimal allocation of water
across network cannot
simultaneously meet societal
and ecosystem flow goals

Prioritize environmental water goals



Results — Tradeoffs Under Conservation

1) Small changes in water
consumption (< 3%) can have

_ big impacts.
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How might these tradeoffs shift under future climates?
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Figure 2. Optimal trade-off curves balancing RRB-wide satisfaction of societal and environmental
water targets. Trade-off curves are calculated for two time periods — early century (2010-2030; small

circles) and near future (2031-2050; large circles).

Fovargue et al. in review



Planning for water sustainability under uncertainty

Water availability varies among
climate scenarios. Can we identify
locations where we are fairly certain of
water scarcity, despite climate
uncertainty?

Figure gives satisfaction of societal and
environmental flow goals assuming
basin-wide optimal reservoir

management.
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Planning for water sustainability under climate uncertainty
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Can joint consideration of
water scarcity and
climate uncertainty guide
Investments in water
sustainability?



How feasible might it be to meet environmental flow
targets below each reservoir?

A Lake Texoma 5 Atoka Reservoir C Kemp Reservoir

Very difficult to
meet both flow

Easy to meet
societal and
environmental
flow goals
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Assuming reservoir management that optimizes basin-wide water
satisfaction, what is the highest possible societal satisfaction when
environmental flow goals are fully met?

Wineland et al. in review



Both conservation
feasibility and
biodiversity value (i.e.,
species’ presence) vary

among climate scenarios.

Can we identify locations
that remain feasible and
high biodiversity value
across climate scenarios?
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Conceptual framework from Wineland et al. in review



Some river reaches do
indeed have high
conservation feasibility
and high biodiversity
value across all nine
climate scenarios.

Can this type of analysis
help to identify locations
for considering instream
flow targets?
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Pie charts give number of climate scenarios (out of nine) in which river
reaches downstream of reach reservoir fall into each feasibiligy/biodiversity

category.

Wineland et al. in review



Conclusions and future work

* Distributions of many fish species will contract, but
outcomes vary among species and among climate
scenarios

* Spatial planning tools can help to prioritize water
conservation efforts in space and time

* Central question: How can we plan for water
sustainability under climate uncertainty?
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